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SYLLABUS : SEMESTER- I
DSC-I : DIFFERENTIAL EQUATIONS

Subject Code: Mat101

Instruction 4 Hrs/Wk
Credits 4
Duration of Semester Examination 3 Hrs
Duration of Sessional Examination 1 Hr
Semester Examination 80 Marks
Sessional Examination 20Marks

Course Objectives
After studying this course, students will be able to:
1: Understand the basic concepts, types, and formation of first-order and first-degree differential

equations and learn methods for their analytical solutions.
2: Develop problem-solving skills to handle non-linear and higher-order differential equations,

particularly those not of the first degree.
3: Acquire techniques for solving higher-order linear differential equations with constant

coefficients using standard operator methods.
4: Explore and apply advanced methods such as variation of parameters, Cauchy-vuler, and
Legendre’s equations, and understand total and simultaneous differential equations.

Course Outcomes
1: Apply various methods to solve first-order and first-degree differential equations, including

separable, homogeneous, lincar, exact, and reducible forms, using integrating factors and variable
transformations.

2: Analyze and solve first-order but not first-degree differential equations such as Clairaut’s
equation, and apply them to real-life models like growth, decay, radioactivityy, and orthogonal
trajectories.

'gj_E!'_'Splve higher-order linear differential equations with constant coefficients using the operator
method and method of undetermined coefficients, and interpret homogencous and non-

2 homogeneous solutions.
"4*Empluy variation of p rameters and handle linear differential equations wii™ variable
2. cocfficients, including Cauchy-Euler and Legendre’s equations, as well as total and simultaneous

2" differential equations.
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UNIT- I

Differential Equations of First Order and First Degree: Introduction- Equations in Which Variables
are Separable — Homogeneous Differential Equations - Differential Equations Reducible
toHomogeneous Form — Linear Differential Equations - Differential Equations Reducible to Linear

Form - Exact Differential Equations — Integrating Factors — Change in Variables (Text Book : 2.1
t02.9)

UNIT- II

Equations of First Order But Not of The First Degree: Case I: Equations Solvable for p -Case Il
‘Equations Solvable for y - Equations Solvable for x — Equations that do not Contain X (or y) -
EquationsHomogeneous in x and y — Equations of First Degree in x and y — Clairaut’s
Equation. Applications of First Order Differential Equations: Growth and Decay — Dynamics of
Tumor Growth- Radioactivity and Carbon Dating — Compound Interest — Orthogonal
Trajectories.( Text Book : 3.1 t0 3.2 & 4.1 to 4.4 & 4.20)

UNIT- 111

Higher Order Linear Differential Equations: Introduction - Solution of Homogeneous Linear
Differential Equations of Order n with Constant Coefficients - Solution of the Non-
HomogeneousDifferential Equations with Constant Coefficients by Means of Polynomial
Operators - Method ofUndetermined Coefficients.

( Text Book : 5.1t05.4)

UNIT-1V
Method of variation of Pararcters — Linear Differential Equations with Non-Constant Cr, ~fficients

~The Cauchy — Euler Equation — Legendre’s Linear Equations — Miscellaneous Differential
Equations.Total Differential Equations — Simultaneous Total Differential Equations — Equations
of the form dx/p=dy/q=dz/r. ( Text Book : 5.5t0 5.9 & 2.10t0 2.12)

TEXT BOOK:
Zafar Ahsan, Differential Equations and Their Applications ( Second Edition)

REFERENCE BOOKS : |
1. Frank Ayres Jr, Theory and Problems of Differential Equations.

2. Ford, L.R : Differential Equations.

3. Daniel Murray, Differential Equations.
4. S. Balachandra Rao, Differential Equations with Applications and Programs.

5. Stuart P Hastings, J Bryce McLead; Classical Methods in Ordinary Differential Equations
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Svllabus for B.Sc I Year
Differential Equations (Practical)
Mathematics- Semester I

Subject Code:Mat101

Instruction 2 Hrs/Week
Duration of Semester Examination 3 Hrs
Semester Examination 25 Marks
Credits 1

4 UNIT-I
1. Solve (l-xz)ﬁ+ 2xy = xV1 — x2

2. Solve (1+e¥)dx+e¥(1- Z)dy=0
! g

3. Solvex?*ydx—(x* + y?)dy = 0

4.Solve(y +z)dx + (x + z)dy + (x +y)dz=0
5.Solve y sin2xdx—(1 + y? + cos? x)dy =0
6.Solve (x*+y?+x)dx+xydy=0

7.Solve (xycos(xy) +sin(xy))dx +(x*cos(xy))dy=0
8.dy/dx + y/xlogx = sin(2x)/logx

UNIT-11
9.y=2px+Tan!(xp?)

10.x%p2-2xyp+2y*-x*=0 |

11.y=2p+3p?

12.sin(p)xcosy = cos(p)xsiny +p

13. (x-a) p*+ (x-y)p - y=0

14. y + px = p*X’

15. yp* + (x—y)p—x =0

16.Find the orthogonal trajectories of x*+y*=cx

17.Find the orthogonal trajectories of r=ci(1-sinf)

18.If radioactive carbon-14 has a half-life of 5750..what will remain of one gram after
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UNIT-III

19.D% + (a+ b)Dy +aby = 0
20. }’y“‘f‘ 3y'+ 2}7 — 2(E-2x 3. KZ)
21. (D? + )y=e* + Cos(x )+x’

22. (D* + 1)(D? +'4)y =
Y =cos(x/3) cos( 3x/2
23. 4}; " -Syrzxze" ( ) ( )

24, (D* + D)y = cosx + xe®* + e*sinx
25. Solve £243% 15 —;
- D0lve Z2+3-~12y=sinx by method of undetermined coefficients
26. (D2-2D~3)}’ = 9xe™+10e™ undetermined coefficients
27. (D*+a?)y=sec(ax)

28. y>+ 2y™ +y' =2x + sinx + cosx

Unit IV
29.x%y" =Xy' + 2y = x log(x)
30.x“y" —xy'+ 2y = x .
31, 2x* + 1)y" —4xy'+ 4y =0 ,.-':
32.y" +2y' +y=x’e* by the method of variation of parameters 4

33. y" -2y'+ty=e* logx

34.x*(y-2)p + y*(z—x)q = Z*(x~y)

35.x2y" + 7xy' + 5y = x

36.y" — G) y' + (ﬁ)y =0,y1l =X

37.x2y" + 2xy' — 20y = (x + 1)2
38.(x+3)2y" —4(x + 3)y' + 6y = log(x + 3)
39. x3y" — x2y" + 2xy’' — 2y = x3 + 3x
40.x2y" + 2xy' — 20y = (x + 1)2

7
- Depattment B iy, Hyd-0
AMSASCW Department of Maths Syllabi 2025-26 [\MT Osmania University
Or. M.A. BRIMIVAS

>3 frofessor @ ol
Deoartment ¢« v aties
‘_«j @/ﬂ/ rﬂ”l'.""'ll'" O E*"I*.;I § o :.'II_.I}
':-"*':r"". e 'ij'tl Mihirg Tecnnoiagice! Linhaprsit l

i E -4 . W E e
Al hpcia sy fD RN




ANDHRA MAHILA SABHA

Autnnnm:lRTS & SCIENCE COLLEGE FOR WOMEN
?;fUNAAC Re-Accredited, 0.U.Campus, Hyderabad — 500 007
sy : 040-27098811.04027070471 (Direct],FaxﬂdDZ?D?aﬂilE
' amsasew1968@gmail.com , ascwams@yahoo.co.in, Website: AMSascw.org

SYLLABUS: SEMESTER- II
DSC-II : REAL ANALYSIS

Subject Code: Mat 15

Instruction: 4Hrs/wk
Credits 4
Duration of Semester Examination 3 Hrs
Duration of Session Examination 1 Hr
Semester Examination 80 Marks
Session Examination 20 Marks

Course Objectives

After successful completion of this course, the students will be able to

1: Understand the algebraic, order, and completeness properties of real numbers and explore the
behaviour of sets and sequences within the real number system.

2: Develop analytical skills to test the convergence and divergence of infinite series and understand

the concepts of limits and continuity for real-valued functions.
3: Comprehend and apply the principles of differentiation to analyse the behaviour of functions,

proving classical results such as Rolle’s, Lagrange’s, and Cauchy’s Mean Value Theorems.
4: Grasp the theory of Riemann integration, understand conditions of integrability, and establish
the connection between integration and differentiation through the Fundamental Theorem of

Calculus.

Course Outcomes
1:Explain the field, order, and completeness properties of real numbers, and analyse the properties

of open, closed, countable, and uncountable sets along with convergent and monotonic sequences.
2:Apply various tests for convergence of infinite series, including comparison, ratio, root, and
integral tests, and examine the limits and continuity of real-valued functions.
3:Demonstrate understanding of differentiability and apply Rolle’s, Lagrange’s, and Cauchy’s
Mean Value Theorems to study the behaviour of functions and their higher-order derivatives.)

4: Evaluate Riemann integrals, verify integrability conditions, use Darboux’s theorem, and
establish the Fundamental Theorem of Calculus linking differentiation and integration.
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UNIT-I

Real Numbers: Field Structure and Order Structure-Bounded and Unbounded Sets- Completeness

in the Set of Real Numbers- Absolute Value of a Real Number (Text Book : Chapter 1: 2 to 5)Open
Sets, Closed Sets and Countable Sets :Limit Points of a Set-Closed Sets-Countable and
Uncountable Sets (Text Book : Chapter 2 : 2 to 4)

Real Sequences: Sequences-Limit points of a Sequence-Convergent Sequences-Non-Convergent

Sequences (Definitions)-Cauchy’s General Principle of Convergence- Algebra of Sequences-
Some Important Theorems-uionotonic Sequences.

( Text Book : Chapter3: 1t0 2 & 4 to 9)

UNIT-II

Infinite Series - Introduction-Positive Term Series- Comparison Tests for Positive Term Series-
Cauchy’s Root test- D’Alembert’s Ratio Test-Integral Test-Alternating Series( Leibnitz
Test).(Text Book : Chapter4:1t05,8 & 10.1)

Functions of a Single Variable (I): Limits-Continuous Functions-Functions Continuous on Closed
Intervals. (Text Book : Chapter 5: 1 to 3)

UNIT -I1I

Functions of a Single Variable (11):The Derivative-Increasing and Decreasing Functions- Rolle’s

Theorem-Lagrange’s Mean Value Theorem- Cauchy’s Mean Value Theorem- Higher Order
Derivatives.(Text Book : Chapter 6: 1,3 & S to 8)

UNIT -1V

The Riemann Integral: Definition and Existence of the Integral-Refinement of Partitions-
Darboux’s Theorem-Conditions of lntegrability-lntegrability of the
Integrable Functions-The Integral as a Limit of Sums-Some
Differentiation-The Fundamental Theorem of Calculus.

(Text Book : Chapter 9: 1 to 9)

Sum and Difference of
Integrable Functions-Integration and
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Practical Syllabus for B.Sc I Year
Mathematics Semester 11

Real Analysis (Practical)

Subject Code: Mat101

Instruction: 2 Hrs/week
Duration of Semester Examination 3 Hrs
Semester Examination 25 Marks
Credits 1

UNIT-I

1.For each sequence below, determine whether it converges and, if it converges, give its
limit. No proofs are required.

(a) an = n/n+1 (b) bn = n*+3/n’>-3

(c)en=2" (d)tn=1+2/n)

@) xn=73+ (1" ()sn=()""

2. Determine the limits of the following sequences, and then prove your claims.

(a) an = n/(n’*+1) (b) bn = 7n—19/3n+7 | |

(c) cn =4n+3/7n—5 (d) dn = 2n+4/5n+2 (e) sn = (1/n) sinn 5
3. Which of the following sequences are increasing? decreasing? Bounded?

(a) 1/n (b) (=1)* /n’ (c)n’

(d) sin(n7/7 ) (e) (-2)" (f) n/ 3

4.  Lettl =1andtn+] =[1— 1/4n® ].tn forn > 1.

(a) Show lim tn exists. (b) What do you think lim tn is?
D. Letsl =1 andsn+1=1/3(sn+ 1) forn= 1.

(a) Find s2, s3 and s4.

(b) Use induction to show sn> 1/2 for all n.

(c) Show (sn) is a decreasing sequence.

(d) Show lim sn exists and find lim sn.
6. Let an=3 + 2(—1)" for n EN.

(a) List the first eight terms of the sequence (an).

(b) Give a subsequence that is constant [takes a single value].

Specify the selection function o.
7. Prove lim sup|sn| = 0 if and only if lim sn = 0.

8. Let (sn) and (tn) be the following sequences that repeat in cycles of four:
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(¢) im infsn + lim sup tn,  (d) lim sup(sn + tn),

(¢) lim sup sn + lim sup tn,  (f) lim inf(sn. tn),

(g) lim sup(sn. tn).

9. Determine which of the following series converge. Justify your answers.

@23 Ohkc (c)):-f-;-:— (@I

4
2" n‘+3

2 Ca
cos n 1
@I O 3
n=2
10. Determine which of the following series converge. Justify your answers

G -k - llogn
(a) Ez ) n-z:"z_L"

< - s« Mogn
(c )n§4 n(logn) (log logn) (d) n§2 n

UNIT-1I

11. Let f(x)=2x*+ 1 for x € R. Prove f is continuous on R by

(a) Using the definition, (b) Using the e-$ property

12. Let f(x) = x* sin( 1/x ) for x # 0 and f(x)= 0 if x=0.Prove f is continuous on R by
(a) Using the definition, (b) Using the €5 property

13.Let f(x) = V4 — x for x <4 and g(x) =x* forall x € R.

(a) Give the domains of f+ g, fg, fogand g o f.

(b) Find the values fo g(0), g f(0), fo g(1), g o f(1), fo g(2) and g ° £(2).

(c) Are the functions fo g and g ° f equal? .
14 . Which of the following continuous functions are uniformly continuous

(a) f(x) = x'7 sin x — €* cos 3x on [0, =],
(b) f(x) =x’ on [0, 1]
(¢ )f(x) = sin( 1/x?) on (0, 1]

15 Prove each of the following functions is uniformly continuous on the
-ndicated set by directly verifying the — property in Definition .

(a) f(x)=3x + 11 on R,

(b) f(x) = x/x+1 on [0, 2]

(c) f(x)=1/xon | 1/2 , ).

| ' tion on R.
16. Prove [x| is a continuous func ' _ IN
17.Prove f.!arlch of the following functions in continuous at X0 by verifyingthe —8 property .

(a) f(x) = x% x0=2;
(b) f{x) = Vx, X0 =0
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IS:Pruvc the following functions are discontinuous at the indicated
points. You may use either Definition or the -§ property .
() f(x) =1 for x> 0 and f(x) = 0 for x < 0, x0 = 0

(b) g(x) = sin( ) for x # 0 and g(0) = 0, x0 = 0:

19.show that if f(x) = 1/x? is uniformly continuous on any set of the form [a,c0) where a > 0
20.Is the function f(x) =x? uniformly continuous on [=7, 7]?

UNIT-III
21.Use the definition of derivative to calculate the derivatives of the
following functions at the indicated points.
(@) fx)=x’atx=2;
(b) f(x) =x*cos x at x = 0:
(¢ )Leth(x) = Vx=x"forx >0

22 Let f(x) = x* sin(1/x) for x # 0, f(0) = 0, and g(x) = x for x € R.
(a) Observe f and g are differentiable on R.
(b) Calculate f(x) forx = 1/an , n==%1, +2,....

: : U EN=g(f(0) . :
(c) Explain why limx—0 F0O—F(0) s meaningless.

23.Let f(x) = x? for x rational and f(x) = 0 for x irrational.
(a) Prove f'is continuous at x = 0,

(b) Prove f is discontinuous at all x # 0.

(c) Prove f'is differentiable at x = 0

24.Determine whether the conclusion of the Mean Value Theorem holds
for the following functions on the specified intervals

(a) x* on [1, 2], (b) sin x on [0, x],
(c) |x| on [—1, 2] (d) sgn(x) on [-2, 2].

25.Prove | cos x — cos y|<|x —y| for all X, y ER.
26.Let f(x) = x? sin( 1/x) + x/2 for x # 0 and {(0) = 0.

(a) Show f(0) > 0. | Rl
(b) Show f is not increasing on any open interval containing 0,
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27.Find —= cosx—1
X ’ xI

2
28.Show that—=— =0 , x* =]
£

29.Find the following limits if they exist.

a) eh—-:ns.r b} vV 1+x;v"1—x
30.Find the following limits if they exist
a) x-—-.':ln X h} 1:::&: X

UNIT-1V
31.Let f(x) = x for rational x and f(x) = 0 for irrational x.
(a) Calculate the upper and lower Darboux integrals for f on the interval [0,b].
(b) Is f integrable on [0,b]?

32. Let f be a bounded function on [a,b]. Suppose there exist sequences (Un) and (Ln) of upper
b

and lower Darboux sums for f such that lim(Un —=Ln) = 0. Show f'is integrable and [ f=1imUn
a

= limLn.
33. A function fon [a,b] is called a step function if there exists a partition P= {a=u0 <ul <..<

um = b} of [a,b] such that fis constant on each interval (uj—1,uj), say f(x) = ¢j for x in (uj—1,u).
‘ b

(a) Show that a step function fis integrable and evaluate [ f.

a
4

(b) Evaluate the integral [ P(x)dx for the postage-stamp function.
0

2

34. Show | [ x’sin‘e” dx|< 167°/3.
=21
35. Let f be a bounded function on[a,b], so that there exists B > 0 such that |f(x)|<B for all x €

a,b]. oy
Ea) Show U(f2,P)-L(f%,P) < 2B [U(f,P)-L(f,P)] for all partitions P of [a,b]. Hint: f(x)? —fly)? =

[f(x) + f)].[fx)—1()] N
(b) Show that if f is integrable on [a,b], then f* also is integrable on [a,b].

36. Calculate
3+h 2

X 2 t
(ay=f etdt )y [ e dt.
0 3
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b
37 Show that if fis a continuous real-valued function on [a,b] satisfying | f(x)g(x)dx =0 for
a

every continuous function g on [a,b], then f(x) = 0 for all x in [a,b].

38.f{(x)=1 for rational f{x)=0 for irrational in [a,b] find U(£p) , L(£p)
1] that is not integrable for which | f| is integrable.

40.f(x)=sin 1/x for x#0 £(0)=0 show that fis integrable on [-1,1] N



